# Mathematical model based on natural history of tuberculosis





Decline in TB mortality in England and Wales, and its association in time with the two World Wars, and the introduction of chemotherapy against TB.



### Comparative poverty indices: TB notification 2006 by index

| Index                   | R2   | P-value |
|-------------------------|------|---------|
| GDP                     | .10  | <.001   |
| Gini                    | .23  | <.001   |
| Proportion <1\$ day     | .19  | <.001   |
| Proportion <2\$ day     | .21  | <.001   |
| U5 mortality            | .17  | <.001   |
| Human development index | .21  | <.001   |
| Total health exp by GDP | .003 | .448    |

### Trends in TB incidence: By Human Development Index



#### <u>Fig. 3</u>

Human development: a statistically significant correlate of trends in TB incidence rate across six groups of countries over 1997–2006, as judged by univariate linear regression (fitted line)<sup>a</sup>

Dye C, Lönnroth K, Jaramillo E, Williams BG, Raviglione M. Trends in tuberculosis incidence and their determinants in 134 countries. Bull World Health Organ. 2009 Sep;87(9):683-91.

### Trends in TB incidence: By Under 5 Mortality



#### <u>Fig. 4</u>

Child mortality: a statistically significant correlate of trends in TB incidence rate across six groups of countries over 1997–2006, as determined by univariate linear regression (fitted line)<sup>a</sup>

|                          | OR (95% CI) individual<br>factors | OR (95% CI) area<br>factors | OR (95% CI) individual and area<br>factors |
|--------------------------|-----------------------------------|-----------------------------|--------------------------------------------|
|                          |                                   |                             |                                            |
| Individual level         |                                   |                             |                                            |
| Sex                      |                                   |                             |                                            |
| Male                     | 2.20 (1.93–2.53)                  |                             | 2.21 (1.92–2.53)                           |
| Age group                |                                   |                             |                                            |
| 20–34 years              | 2.72 (2.07–3.59)                  |                             | 2.70 (2.06–3.55)                           |
| 35–49 years              | 3.75 (2.90–4.85)                  |                             | 3.76 (2.91–4.86)                           |
| 50–64 years              | 3.38 (2.73–4.20)                  |                             | 3.42 (2.74–4.25)                           |
| 65 years                 | 1.89 (1.46–2.45)                  |                             | 1.96 (1.52–2.54)                           |
| Illiterate               | 1.38 (1.15–1.66)                  |                             | 1.33 (1.11–1.61)                           |
| Not worked previous week | 1.32 (1.13–1.53)                  |                             | 1.31 (1.13–1.52)                           |
| Possession of goods      |                                   |                             |                                            |
| 4–6                      | 1.74 (1.36–2.23)                  |                             | 1.48 (1.16–1.90)                           |
| 2–3                      | 2.93 (2.24–3.84)                  |                             | 2.42 (1.86–3.15)                           |
| 0–1                      | 5.52 (3.57–7.64)                  |                             | 4.27 (2.88–6.34)                           |
| Area level               |                                   |                             |                                            |
| Computers and literacy   |                                   |                             |                                            |
| Intermediate             |                                   | 1.58 (1.25–2.00)            | 1.29 (1.00–1.67)                           |
| Low                      |                                   | 2.12 (1.64–2.74)            | 1.59 (1.19–2.13)                           |



TB cases each year

# Cuba: upturn in TB linked to economic shock, partly mediated by nutritional crisis



### **TB** and economic recession, 1990s

Excess morbidity driven by a process common to 15 Central & Eastern European countries



## How does poverty cause TB?

What can we do about it?





#### Pathogenesis model of TB progression



7. Relapse

## Individual risk factors for infection

- Exposure to people and to people with TB
  - Urban versus rural OR 2 in Navy recruits
  - Intimate versus causal contact

Age-adjusted % positive skin test reactors in children age 0-14 in British Columbia 1966-1971

|                  | Race and closeness of TB contact |             |                 |               |  |  |  |
|------------------|----------------------------------|-------------|-----------------|---------------|--|--|--|
| Sputum status of | Indian (                         | Children    | White children  |               |  |  |  |
| source case      |                                  |             |                 |               |  |  |  |
|                  | Intimate (1012)                  | Casual(619) | Intimate (1873) | Casual (3031) |  |  |  |
| Positive smear   | 44.7                             | 37.4        | 34.7            | 10.1          |  |  |  |
| Positive culture | 27.7                             | 15.6        | 8.9             | 2.4           |  |  |  |
| Negative culture | 25.7                             | 18.7        | 7.2             | 3.3           |  |  |  |



### Environment





# Attributes of index case

- Smear status
- Cavitary lesions
- Closeness of contact
- Treatment delay
- Smoking in index case (increases risk)
- HIV in index case (decreases risk)

- Lineage?
- Drug resistance?

# Cough aerosols predict infection

| Characteristic                 | Total (N = 369) | Tuberculosis Disease<br>(n = 8) | No Tuberculosis Disease<br>(n = 361) | Unadjusted OR<br>(95% CI) | <i>P</i><br>Value | Adjusted OR With HIV<br>(95% CI) | <i>P</i><br>Value | Adjusted OR Without HIV<br>(95% CI) | <i>P</i><br>Value |
|--------------------------------|-----------------|---------------------------------|--------------------------------------|---------------------------|-------------------|----------------------------------|-------------------|-------------------------------------|-------------------|
| Sputum volume, mL              |                 |                                 |                                      |                           |                   |                                  |                   |                                     |                   |
| <5                             | 129 (35)        | 1 (13)                          | 128 (35)                             | Reference                 |                   |                                  |                   |                                     |                   |
| ≥5                             | 240 (65)        | 7 (87)                          | 233 (65)                             | 3.9 (.48-31.4)            | .20               |                                  |                   |                                     |                   |
| Sputum appearance <sup>f</sup> |                 |                                 |                                      |                           |                   |                                  |                   |                                     |                   |
| Nonpurulent                    | 151 (41)        | 2 (25)                          | 149 (42)                             | Reference                 |                   |                                  |                   |                                     |                   |
| Purulent                       | 214 (59)        | 6 (75)                          | 208 (58)                             | 2.14 (.4-10.5)            | .35               |                                  |                   |                                     |                   |
| Sputum AFB smear grade         |                 |                                 |                                      |                           |                   |                                  |                   |                                     |                   |
| 1+ <sup>9</sup>                | 60 (16)         | 0                               | 60 (100)                             |                           | .28 <sup>h</sup>  |                                  |                   |                                     |                   |
| 2+                             | 59 (16)         | 0                               | 59 (100)                             |                           |                   |                                  |                   | (4.4.4                              |                   |
| 3+                             | 250 (68)        | 8 (100)                         | 242 (67)                             |                           |                   |                                  |                   |                                     |                   |
| Sputum MGIT, DTP               |                 |                                 |                                      |                           |                   |                                  |                   |                                     |                   |
| Median (IQR)                   | 6 (4-8)         | 3 (2-4)                         | 6 (4-8)                              | 0.67 (.4893)              | .02               |                                  |                   |                                     |                   |
| ≥6                             | 189 (52)        | 1 (13)                          | 188 (53)                             | Reference                 |                   | Reference                        |                   | Reference                           |                   |
| <6                             | 172 (48)        | 7 (87)                          | 165 (47)                             | 7.9 (.98-64.7)            | .05               | 8.2 (1.1-59.2)                   | .04               | 7.5 (1.1–52.6)                      | .04               |
| Aerosol CFU count              |                 |                                 |                                      |                           |                   |                                  |                   |                                     |                   |
| Median (IQR)                   | 0 (0-6)         | 16 (1–32)                       | 0 (0–6)                              | 1.01 (1.00-1.01)          | .15               |                                  |                   |                                     |                   |
| Mean (SD)                      | 14.9 (47)       | 35.1 (55.6)                     | 14.5 (46.8)                          | •••                       |                   |                                  |                   |                                     |                   |
| Range                          | 0–378           | 0–163                           | 0–378                                |                           |                   |                                  |                   |                                     |                   |
| <10                            | 293 (79)        | 4 (50)                          | 289 (80)                             | Reference                 |                   | Reference                        |                   | Reference                           |                   |
| ≥10                            | 76 (21)         | 4 (50)                          | 72 (20)                              | 4.0 (.98-16.3)            | .05               | 6.0 (1.4–25.2)                   | .01               | 4.3 (.98–18.8)                      | .05               |

#### nealth services

| Risk factors for Diagnostic delay                                 | Positive association                                                                        | Negative association |
|-------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------|
| HIV                                                               | [10]                                                                                        | [11-13]              |
| Coexistence of chronic cough and/or other lung diseases           | [12, 14-16]                                                                                 | [7]                  |
| Negative sputum smear                                             | [12, 19, 20]                                                                                | [15]                 |
| Extrapulmonary TB                                                 | [7, 17, 18]                                                                                 |                      |
| Rural residence                                                   | [5, 11, 14, 16, 23, 25, 29-32]                                                              |                      |
| Low access to healthcare                                          | [6, 8, 10, 14, 18, 23, 25, 27-30, 34, 42, 47,<br>48, 50]                                    |                      |
| Initial visit to government low-level healthcare facility         | [5, 6, 9-11, 23, 26, 32-34]                                                                 | [35]                 |
| Initial visit to traditional or unqualified practitioner          | [9, 10, 14, 26-29, 32, 36, 37]                                                              |                      |
| Initial visit to private practitioner                             | [9, 10, 14, 26-29, 32, 36, 37]                                                              |                      |
| Initial visit to tertiary-level services/hospital                 | [11]                                                                                        | [13, 23, 38, 39]     |
| Old age                                                           | [5, 12, 14-16, 19, 23, 24, 26, 38, 40, 41]                                                  | [18, 35]             |
| Poverty                                                           | [7, 20, 21, 27, 28, 34, 37, 40, 41, 47, 48,<br>54, 56]                                      | [18]                 |
| Female sex                                                        | [8, 10, 11, 14-16, 20, 22, 31, 33, 39, 40]                                                  | [5, 21, 23, 25]      |
| Alcoholism or substance abuse                                     | [8, 21-25]                                                                                  |                      |
| History of immigration                                            | [8, 15, 17, 22, 38, 39, 42]                                                                 |                      |
| Low educational level and/or low awareness and knowledge about TB | [9, 15-17, 20, 21, 23, 24, 27, 28, 31-33, 38,<br>39]                                        | [13]                 |
|                                                                   | A systematic review of delay in the diagnosis and sis. BMC Public Health. 2008 Jan 14;8:15. | treatment of         |

| Variable                                  | Adjusted odds ratio | 95% CI    | P-value |
|-------------------------------------------|---------------------|-----------|---------|
| Total treatment delay of index case       |                     |           |         |
| Non-TB index case (baseline group)        | 1                   |           |         |
| TB index case with delay $\leq$ 30 d      | 0.61                | 0.20-1.87 | 0.38    |
| TB index case with 30-60 d delay          | 1.86                | 1.20-2.89 | 0.007   |
| TB index case with 60-90 d delay          | 2.37                | 1.56-4.11 | <0.001  |
| TB index case with delay >90 d            | 2.27                | 1.46-3.63 | <0.001  |
| Chest X-ray with cavitation of index case |                     |           |         |
| Negative                                  | 1                   |           |         |
| Positive                                  | 1.64                | 1.25-2.21 | <0.001  |
| Age of contact (years)                    |                     |           |         |
| <u>≤</u> 4                                | 1                   |           |         |
| 4—14]                                     | 2.07                | 0.93-4.89 | 0.10    |
| 14-24                                     | 3.78                | 1.69-10.5 | 0.002   |
| 24–64                                     | 4.64                | 2.15-11.7 | <0.001  |
| >64                                       | 5.57                | 2.06-15.4 | <0.001  |
| Sleeping site relative to TB patient      |                     |           |         |
| Different bedroom                         | 1                   |           |         |
| Same bedroom                              | 2.29                | 1.67-2.94 | < 0.001 |

Table 4Independent risk factors for tuberculin skin test (TST) positivity of household contacts identified by multivariaterandom intercept model among total contacts (n = 1668)

Lin X, Chongsuvivatwong V, Lin L, Geater A, Lijuan R. Dose-response relationship between treatment delay of smear-positive tuberculosis patients and intra-household transmission: a cross-sectional study. Trans R Soc Trop Med Hyg. 2008;102:797-804.

### Host factors associated with disease

- Malnutrition
- Co-morbidities
- HIV
- Helminths



Poverty

- Diabetes mellitus
- Smoking
- Alcoholism



Poor populations within wealthier countries

Table 1 Relative Risk, Prevalence and Population Attributable Risk of Selected Risk Factors for TB, in 22 High TB Burden Countries

| Risk Factor (reference for<br>relative risk and prevalence<br>estimates, respectively) | Relative Risk for<br>Active TB Disease<br>(Range) <sup>a</sup> | Weighted Prevalence,<br>Total Population, 22 TB<br>High Burden Countries <sup>b</sup> | Population Attributable<br>Fraction (Range) <sup>c</sup> |  |  |
|----------------------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------|--|--|
| HIV infection <sup>53,54</sup>                                                         | 8.3 (6.1–10.8)                                                 | 1.1%                                                                                  | 7.3% (5.2–9.6)                                           |  |  |
| Malnutrition <sup>46,55,d</sup>                                                        | 4.0 (2.0-6.0)                                                  | 17.2%                                                                                 | 34.1% (14.7–46.3)                                        |  |  |
| Diabetes <sup>51,56,e</sup>                                                            | 3.0 (1.5–7.8)                                                  | 3.4%                                                                                  | 6.3% (1.6–18.6)                                          |  |  |
| Alcohol use $>$ 40g/day <sup>50,f</sup>                                                | 2.9 (1.9–4.6)                                                  | 7.9%                                                                                  | 13.1% (6.7–22.2)                                         |  |  |
| Active smoking <sup>48,57,g</sup>                                                      | 2.6 (1.6–4.3)                                                  | 18.2%                                                                                 | 22.7% (9.9–37.4)                                         |  |  |
| Indoor pollution <sup>47,49,h</sup>                                                    | 1.5 (1.2–3.2)                                                  | 71.1%                                                                                 | 26.2% (12.4–61.0)                                        |  |  |

### Alcohol Use and TB Risk

Table 2: Pooled effect sizes for different sub-categories of studies.

| Study category                                  | No of<br>studies | Hetero-geneity test<br>Cochrane's Q p-value (I <sup>2</sup> ) | Pooled, fixed effect<br>assumption<br>(95% confidence interval) | Pooled, random effect<br>assumption<br>(95% confidence interval) |  |
|-------------------------------------------------|------------------|---------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------|--|
| Level of exposure                               | 11710.           |                                                               |                                                                 |                                                                  |  |
| High exposure                                   | 11               | < 0.01 (0.82)                                                 | 2.90 (2.39-3.51)                                                | 3.50 (2.01-5.93)                                                 |  |
| Low exposure                                    | 4                | 0.46 (0.00)                                                   | 1.08 (0.82-1.40)                                                | 1.08 (0.82-1.40)                                                 |  |
| High-exposure studies                           |                  |                                                               |                                                                 |                                                                  |  |
| Controlled* for HIV status                      | 7                | 0.03 (0.57)                                                   | 2.93 (2.37-3.61)                                                | 3.26 (2.26-4.70)                                                 |  |
| Controlled* age, sex, SES, smoking              | 5                | 0.04 (0.61)                                                   | 3.27 (2.38-4.50)                                                | 3.49 (2.06-5.90)                                                 |  |
| Controlled* HIV, age, sex, SES, smoking         | 4                | 0.07 (0.42)                                                   | 3.92 (2.70-5.71)                                                | 4.08 (2.49-6.68)                                                 |  |
| Controlled* infection, age, sex, SES            | 4                | 0.23 (0.30)                                                   | 4.11 (2.84-5.94)                                                | 4.21 (2.73-6.48)                                                 |  |
| Excluding three smallest studies                | 8                | 0.03 (0.59)                                                   | 2.75 (2.19-3.46)                                                | 2.94 (1.89-4.59)                                                 |  |
| Excluding three smallest and Brown I<br>and Kim | 6                | 0.32 (0.15)                                                   | 2.76 (2.34-3.81)                                                | 2.96 (2.28-3.85)                                                 |  |
| Pulmonary TB cases only**                       | 2                | 0.49 (0.00)                                                   | 3.67 (2.58-5.22)                                                | 3.67 (2.58-5.22)                                                 |  |
| All types of TB**                               | 6                | < 0.01 (0.83)                                                 | 2.52 (1.98-3.19)                                                | 2.87 (1.47-5.58)                                                 |  |

\*Controlled for respective covariates, either by design (e.g. through inclusion/exclusion criteria) or in the analysis (stratification or multivariate analysis)

\*\*Excluding three smallest studies

Research article

**Open Access** 

#### Alcohol use as a risk factor for tuberculosis - a systematic review

Knut Lönnroth\*, Brian G Williams, Stephanie Stadlin, Ernesto Jaramillo and Christopher Dye

BMC Public Health 2008, 8:289

#### Host Factors: Global distribution of alcohol use in men



### Host Factors: BMI

Dose–response relationship in the reviewed cohort studies on the association between BMI and TB incidence.



Lönnroth K, Williams BG, Cegielski P, Dye C. A consistent log-linear relationship between tuberculosis incidence and body mass index. Int J Epidemiol. 2009 Oct 9. Ahead of print.

#### Undernutrition



## **Global Distribution Male Smoking**







#### OPEN O ACCESS Freely available online

PLOS MEDICINE

### Tobacco Smoke, Indoor Air Pollution and Tuberculosis: A Systematic Review

#### and Meta-Analysis



#### Hsien-Ho Lin<sup>1</sup>, Majid Ezzati<sup>2</sup>, Megan Murray<sup>1,3,4\*</sup>

1 Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, United States of America, 2 Department of Population and International Health and Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, United States of America, 3 Division of Social Medicine and Health Inequalities, Brigham and Women's Hospital, Boston, Massachusetts, United States of America, 4 Infectious Disease Unit, Massachusetts General Hospital, Boston, Massachusetts, United States of America



| Study<br>Cohort study<br>Leung (2004)                                                                                                                                                                                                                                                                                        |                  |                |             | <b>Effect Size</b> (95% CI) 2.87 ( 2.00, 4.11)                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Case-control studies<br>Jick (2006)<br>Shetty (2006)<br>Lienhardt (2005)<br>Wang (2005)<br>Crampin (2004)<br>Ariyothai (2004)<br>Tekkel (2002)<br>Kolappan (2002)<br>Tocque (2001)<br>Dong (2001)<br>Alcaide (1996)<br>Buskin (1994)<br>Lewis (1963)<br>Brown (1961)<br>Lowe (1956)<br>Heterogeneity: l <sup>2</sup> = 54.4% |                  |                |             | $\begin{array}{c} 1.60 \ ( \ 1.40, \ 2.40) \\ \hline 0.80 \ ( \ 0.34, \ 1.89) \\ 2.54 \ ( \ 1.77, \ 3.66) \\ 1.54 \ ( \ 1.16, \ 2.04) \\ 1.30 \ ( \ 0.70, \ 2.40) \\ 2.70 \ ( \ 1.04, \ 6.97) \\ \hline 4.62 \ ( \ 2.44, \ 8.73) \\ 2.24 \ ( \ 1.27, \ 3.94) \\ 1.46 \ ( \ 0.87, \ 2.47) \\ 1.65 \ ( \ 1.00, \ 2.73) \\ 3.60 \ ( \ 1.50, \ 7.20) \\ 1.30 \ ( \ 0.80, \ 2.10) \\ 1.01 \ ( \ 0.55, \ 1.85) \\ 0.95 \ ( \ 0.45, \ 2.02) \\ 1.61 \ ( \ 1.27, \ 2.02) \end{array}$ |
| Cross-sectional studies<br>Gupta BN (1997)<br>Yu (1988)<br>Adelstein (1967)<br>Shah (1959)<br>Heterogeneity: I <sup>2</sup> = 50.2%                                                                                                                                                                                          |                  |                |             | 1.38 ( 0.80, 2.39)<br>2.17 ( 1.29, 3.63)<br>3.90 ( 2.02, 7.57)<br>2.70 ( 1.37, 5.29)                                                                                                                                                                                                                                                                                                                                                                                          |
| 0.4<br>Decreased risk                                                                                                                                                                                                                                                                                                        | 1<br>Effect Size | 2<br>Increased | 4<br>d risk | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

#### Leading causes of death in China - 2002



Effects of smoking and solid-fuel use on COPD, lung cancer, and tuberculosis in China: a time-based, multiple risk factor, modelling study

Hsien-Ho Lin, Megan Murray, Ted Cohen, Caroline Colijn, Majid Ezzati



Lancet 2008; 372: 1473-83

(W 🐴

### Attributable and avoidable disease burden



### Estimate and model smoking trends in China



### Indoor air pollution from solid fuel and tuberculosis: a systematic review and meta-analysis

#### H-H. Lin,\* C-W. Suk,<sup>†</sup> H-L. Lo,<sup>‡</sup> R-Y. Huang,<sup>‡</sup> D. A. Enarson,<sup>§</sup> C-Y. Chiang<sup>†§¶</sup>

\*Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, <sup>†</sup>Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, <sup>‡</sup>Department of Community Health, Mennonite Christian Hospital, Hualien, Taiwan; <sup>§</sup>International Union Against Tuberculosis and Lung Disease, Paris, France; <sup>¶</sup>Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan

| Author, reference           | e Year               |               |               |          |    | SE (95%CI)        | Weight (% |
|-----------------------------|----------------------|---------------|---------------|----------|----|-------------------|-----------|
| Case-control studi          | ies                  |               |               |          |    |                   |           |
| Perez-Padilla <sup>18</sup> | 2001                 |               |               | -+       |    | 2.20 (1.13-4.30)  | 10.98     |
| Crampin <sup>17</sup>       | 2004                 |               | -+            |          |    | 0.60 (0.31-1.15)  | 11.27     |
| Shetty <sup>16</sup>        | 2006                 |               | -             | <u> </u> |    | 0.90 (0.46-1.76)  | 10.97     |
| Garcia-Sancho15             | 5 2009               |               | ŀ             | +        |    | 3.30 (1.06-10.29) | 6.10      |
| Behera <sup>14</sup>        | 2010                 | -             |               | _        |    | 0.60 (0.21-1.70)  | 6.87      |
| Pokhrel <sup>12</sup>       | 2010                 |               | -             | •        |    | 1.21 (0.48-3.05)  | 7.93      |
| Gninafon <sup>19</sup>      | 2011                 |               | -+            | •        |    | 1.40 (0.71-2.75)  | 10.91     |
| Kan <sup>20</sup>           | 2011                 |               |               |          |    | 1.08 (0.62-1.88)  | 12.72     |
| Lakshmi <sup>13</sup>       | 2012                 |               |               | +-       |    | 3.14 (1.15-8.57)  | 7.18      |
| Patra <sup>21</sup>         | 2012                 |               | +             |          |    | 0.76 (0.51-1.14)  | 15.06     |
| Subtotal (12 56.2%          | b, <i>P</i> = 0.015) |               | $\rightarrow$ | $\sim$   |    | 1.17 (0.83-1.65)  | 100.00    |
| with estimated p            | redictive interval   |               |               |          |    | (0.43-3.19)       |           |
| Cross-sectional st          | udies                |               |               |          |    |                   |           |
| Gupta <sup>24</sup>         | 1997                 |               |               | +        | _  | 2.54 (1.07-6.03)  | 18.44     |
| Mishra <sup>23</sup>        | 1999                 |               |               |          |    | 2.58 (1.98-3.37)  | 28.61     |
| Kolappan <sup>22</sup>      | 2009                 |               |               | +        |    | 1.70 (1.00-2.89)  | 24.39     |
| Mengersen <sup>26</sup>     | 2011                 | •             |               | _        |    | 0.17 (0.00-5.79)  | 2.59      |
| Saha <sup>27</sup>          | 2011                 |               | +             | -        |    | 0.84 (0.54-1.31)  | 25.96     |
| Subtotal (12 80.5%          | P = 0.000            | -             |               | $\sim$   |    | 1.62 (0.89-2.93)  | 100.00    |
| with estimated p            | redictive interval   |               |               |          |    | . (0.22-11.91)    |           |
| NOTE: weights a             | are from random effe | ects analysis |               |          |    |                   |           |
|                             |                      | 1             |               | 1        | 1  |                   |           |
|                             |                      | 0.1           | 0.5 1         | 2        | 10 |                   |           |



#### Population using solid fuels (%), 2010 Total



#### Diabetes and TB risk



## Severity of diabetes and risk of TB

| Study                           | Diabetes strata              | Relative<br>Risks | 95% CI       |
|---------------------------------|------------------------------|-------------------|--------------|
| Pablo-<br>Mendez e<br>al., 1997 | No DM<br>t                   | 1                 |              |
|                                 | Type II DM,<br>uncomplicated | 1.08              | (0.98-1.20)  |
|                                 | Type I DM,<br>uncomplicated  | 1.47              | (1.25, 1.73) |
|                                 | Poorly controlled            | 2.75              | (2.46, 3.06) |
| Leung et<br>al., 2008           |                              | 1                 |              |
|                                 | DM, HbA1c<7%                 | 0.81              | (0.44, 1.48) |
|                                 | DM, HbA1c>=7%                | 2.56              | (1.95, 3.35) |

# Differential yield by severity of DM

Relative detection of TB by severity of diabetes in studies that stratified by insulin dependence

| Study                          | Diabetes Seve                      | rity (Quantity of I    | nsulin Required)            | Prevalence or<br>Incidence Ratio<br>(compared to<br>mild diabetes) |        |                |
|--------------------------------|------------------------------------|------------------------|-----------------------------|--------------------------------------------------------------------|--------|----------------|
|                                |                                    |                        |                             | Mil                                                                | Modera | a              |
|                                | Mild                               | Moderate               | Severe                      | d                                                                  | te     | Severe         |
| Boucot et al., 1952            | No insulin                         | I-39 u/day of insulin  | <b>≥40 u/day of</b> insulin | 1.0                                                                | 1.3    | 3.9            |
| Oscarsoon and<br>Silwer , 1958 | No insulin -<br>20u/day of insulin | 20-39 u/day of insulin | <b>≥40 u/day of</b> insulin | 1.0                                                                | 4.2    | 20.9           |
| Golli et al., 1975             | No insulin                         | 10-20 u/day of insulin | >20 u/day of insulin        | 1.0                                                                | 0.6    | 2.8            |
| Lester, 1984                   | No insulin                         |                        | Insulin-dependent           | 1.0                                                                |        | <del>7.2</del> |

# Number of people with DM to screen to detect 1 additional TB case



baseline TB prevalence per 100,000 (log scale)

# Number of people with TB to screen to detect 1 additional case of DM



baseline DM prevalence, % (log scale)

#### Number of people with diabetes worldwide

in 2017 and 2045 (20-79 years)



# Others

- Malignancies
- Renal failure
- Gastrectomy and jejunoileal bypass

- Steroid use
- Infliximab
- RA?

# Others



### The global distribution of risk factors by poverty level

Tony Blakely,<sup>1</sup> Simon Hales,<sup>2</sup> Charlotte Kieft,<sup>3</sup> Nick Wilson,<sup>4</sup> & Alistair Woodward<sup>5</sup>

Bulletin of the World Health Organization February 2005, 83 (2)



#### Tobacco use



Т

AMRD

AMRB

40

20

0

AFRD

AFRE

EURB

EURC

WPRB