Mathematical model based on natural history of tuberculosis

Decline in TB mortality in England and Wales, and its association in time with the two World Wars, and the introduction of chemotherapy against TB.

Comparative poverty indices: TB notification 2006 by index

Index	R 2	P-value
GDP	.10	$<.001$
Gini	.23	$<.001$
Proportion $<1 \$$ day	.19	$<.001$
Proportion $<2 \$$ day	.21	$<.001$
U5 mortality	.17	$<.001$
Human development index	.21	$<.001$
Total health exp by GDP	.003	.448

Trends in TB incidence: By Human Development Index

Fig. 3
Human development: a statistically significant correlate of trends in TB incidence rate across six groups of countries over 1997-2006, as judged by univariate linear regression (fitted line) ${ }^{\text {a }}$

Trends in TB incidence: By Under 5 Mortality

Fig. 4
Child mortality: a statistically significant correlate of trends in TB incidence rate across six groups of countries over 1997-2006, as determined by univariate linear regression (fitted line) ${ }^{\text {a }}$

	OR (95\% CI) individual factors	OR (95\% CI) area factors	OR (95\% CI) individual and area factors
Individual level			
Sex			
Male	2.20 (1.93-2.53)		2.21 (1.92-2.53)
Age group			
20-34 years	2.72 (2.07-3.59)		2.70 (2.06-3.55)
35-49 years	3.75 (2.90-4.85)		3.76 (2.91-4.86)
50-64 years	3.38 (2.73-4.20)		3.42 (2.74-4.25)
65 years	1.89 (1.46-2.45)		1.96 (1.52-2.54)
Illiterate	1.38 (1.15-1.66)		1.33 (1.11-1.61)
Not worked previous week	1.32 (1.13-1.53)		1.31 (1.13-1.52)
Possession of goods			
4-6	1.74 (1.36-2.23)		1.48 (1.16-1.90)
2-3	2.93 (2.24-3.84)		2.42 (1.86-3.15)
0-1	5.52 (3.57-7.64)		4.27 (2.88-6.34)
Area level			
Computers and literacy			
Intermediate		1.58 (1.25-2.00)	1.29 (1.00-1.67)
Low		2.12 (1.64-2.74)	1.59 (1.19-2.13)

Over the edge... Russia in the 1990s

Cuba: upturn in TB linked to economic shock, partly mediated by nutritional crisis

TB and economic recession, 1990s

Excess morbidity driven by a process common to 15
Central \& Eastern European countries

How does poverty cause TB?

What can we do about it?

Pathogenesis model of TB progression

Transitions

1. Infection leading to latent TB
2. Infection leading to primary disease
3. Re-activation of latent TB
4. Re-infection leading to disease
5. Cure
6. Death
7. Relapse

- Exposure to people and to people with TB
- Urban versus rural OR 2 in Navy recruits
- Intimate versus causal contact

Age-adjusted \% positive skin test reactors in children age 0-14 in British Columbia 1966-1971

	Race and closeness of TB contact				
Sputum status of source case	Indian Children			White children	
	Intimate (1012)	Casual(619)	Intimate (1873)	Casual (3031)	
Positive smear	44.7	37.4	34.7	10.1	
Positive culture	27.7	15.6	8.9	2.4	
Negative culture	25.7	18.7	7.2	3.3	

Environment

Attributes of index case

- Smear status
- Cavitary lesions
- Closeness of contact
- Treatment delay
- Smoking in index case (increases risk)
- HIV in index case (decreases risk)
- Lineage?
- Drug resistance?

Cough aerosols predict infection

Characteristic	Total ($\mathrm{N}=369$)	Tuberculosis Disease $(\mathrm{n}=8)$	No Tuberculosis Disease $(n=361)$	Unadjusted OR (95\% CI)	$\begin{gathered} P \\ \text { Value } \end{gathered}$	Adjusted OR With HIV (95\% CI)	$\begin{gathered} P \\ \text { Value } \end{gathered}$	Adjusted OR Without HIV (95\% CI)	P Value
Sputum volume, mL									
<5	129 (35)	1 (13)	128 (35)	Reference
≥ 5	240 (65)	7 (87)	233 (65)	3.9 (.48-31.4)	. 20
Sputum appearance ${ }^{\dagger}$									
Nonpurulent	151 (41)	2 (25)	149 (42)	Reference
Purulent	214 (59)	6 (75)	208 (58)	2.14 (.4-10.5)	. 35
Sputum AFB smear grade									
$1+^{9}$	60 (16)	0	60 (100)	. . .	$.28^{\text {h }}$
$2+$	59 (16)	0	59 (100)
$3+$	250 (68)	8 (100)	242 (67)
Sputum MGIT, DTP									
Median (IQR)	6 (4-8)	3 (2-4)	6 (4-8)	0.67 (.48-.93)	. 02
≥ 6	189 (52)	1 (13)	188 (53)	Reference	. .	Reference	\cdots	Reference	. .
<6	172 (48)	7 (87)	165 (47)	7.9 (.98-64.7)	. 05	8.2 (1.1-59.2)	. 04	7.5 (1.1-52.6)	. 04
Aerosol CFU count					\cdots	
Median (IQR)	0 (0-6)	16 (1-32)	0 (0-6)	1.01 (1.00-1.01)	. 15
Mean (SD)	14.9 (47)	35.1 (55.6)	14.5 (46.8)
Range	0-378	0-163	0-378
<10	293 (79)	4 (50)	289 (80)	Reference	. .	Reference	. .	Reference	. . .
≥ 10	76 (21)	4 (50)	72 (20)	4.0 (.98-16.3)	. 05	6.0 (1.4-25.2)	. 01	4.3 (.98-18.8)	. 05

Risk factors for Diagnostic delay

HIV
Coexistence of chronic cough and/or other lung diseases
Negative sputum smear
Extrapulmonary TB
Rural residence
Low access to healthcare
Initial visit to government low-level healthcare facility
Initial visit to traditional or unqualified practitioner
Initial visit to private practitioner
Initial visit to tertiary-level services/hospital

Positive association

[10]
[12, 14-16]
[12, 19, 20]
[7, 17, 18]
[5, 11, 14, 16, 23, 25, 29-32]
$[6,8,10,14,18,23,25,27-30,34,42,47$,
$48,50]$
[5, 6, 9-11, 23, 26, 32-34]
$[9,10,14,26-29,32,36,37]$
$[9,10,14,26-29,32,36,37]$
[11]

Negative association

Old age
$[5,12,14-16,19,23,24,26,38,40,41]$
[11-13]

Old age	$[5,12,14-16,19,23,24,26,38,40,41]$	18, 35]
Poverty	$\begin{gathered} {[7,20,21,27,28,34,37,40,41,47,48,} \\ 54,56] \end{gathered}$	[18]
Female sex	[8, 10, 11, 14-16, 20, 22, 31, 33, 39, 40]	$[5,21,23,25]$
Alcoholism or substance abuse	[8, 21-25]	
History of immigration	[8, 15, 17, 22, 38, 39, 42]	
Low educational level and/or low awareness and knowledge about TB	$\begin{gathered} {[9,15-17,20,21,23,24,27,28,31-33,38,} \\ 39] \end{gathered}$	[13]

Storla DG, Yimer S, Bjune GA. A systematic review of delay in the diagnosis and treatment of tuberculosis. BMC Public Health. 2008 Jan 14;8:15.

Impact of treatment delay on transmission

Table 4 Independent risk factors for tuberculin skin test (TST) positivity of household contacts identified by multivariate random intercept model among total contacts ($n=1668$)

Variable	Adjusted odds ratio	95\% CI	P-value
Total treatment delay of index case			
Non-TB index case (baseline group)	1		
TB index case with delay $\leq 30 \mathrm{~d}$	0.61	0.20-1.87	0.38
TB index case with 30-60 d delay	1.86	1.20-2.89	0.007
TB index case with 60-90 d delay	2.37	1.56-4.11	<0.001
TB index case with delay >90 d	2.27	1.46-3.63	<0.001
Chest X-ray with cavitation of index case			
Negative	1		
Positive	1.64	1.25-2.21	<0.001
Age of contact (years)			
≤ 4	1		
4-14]	2.07	0.93-4.89	0.10
14-24	3.78	1.69-10.5	0.002
24-64	4.64	2.15-11.7	<0.001
>64	5.57	2.06-15.4	<0.001
Sleeping site relative to TB patient			
Different bedroom	1		
Same bedroom	2.29	1.67-2.94	<0.001

Lin X, Chongsuvivatwong V, Lin L, Geater A, Lijuan R. Dose-response relationship between treatment delay of smear-positive tuberculosis patients and intra-household transmission: a crosssectional study. Trans R Soc Trop Med Hyg. 2008;102:797-804.

Host factors associated with disease

- Malnutrition
- Co-morbidities
- HIV
- Helminths

Poverty

- Diabetes mellitus
- Smoking
- Alcoholism

Poor populations within wealthier countries

Table 1 Relative Risk, Prevalence and Population Attributable Risk of Selected Risk Factors for TB, in $\mathbf{2 2}$ High TB Burden Countries

Risk Factor (reference for relative risk and prevalence estimates, respectively)	Relative Risk for Active TB Disease (Range) $^{\mathbf{a}}$	Weighted Prevalence, Total Population, 22 TB $^{\text {High Burden Countries }}{ }^{\mathbf{b}}$	Population Attributable Fraction (Range)
HIV infection 53,54	$8.3(6.1-10.8)$	1.1%	$7.3 \%(5.2-9.6)$
Malnutrition $^{46,55, \mathrm{~d}}$	$4.0(2.0-6.0)$	17.2%	$34.1 \%(14.7-46.3)$
Diabetes $^{51,56, \mathrm{e}}$	$3.0(1.5-7.8)$	3.4%	$6.3 \%(1.6-18.6)$
${\text { Alcohol use }>40 \mathrm{~g} / \text { day }^{50, f}}^{\text {Active smoking }}{ }^{48,57, \mathrm{~g}}$	$2.9(1.9-4.6)$	7.9%	$13.1 \%(6.7-22.2)$
Indoor pollution $^{47,49, \mathrm{~h}}$	$2.6(1.6-4.3)$	18.2%	$22.7 \%(9.9-37.4)$

Alcohol Use and TB Risk

Table 2: Pooled effect sizes for different sub-categories of studies.

Study category	No of studies	Hetero-geneity test Cochrane's Q p-value (I^{2})	Pooled, fixed effect assumption (95\% confidence interval)	Pooled, random effect assumption (95\% confidence interval)
Level of exposure				
High exposure	11	<0.01 (0.82)	2.90 (2.39-3.51)	3.50 (2.01-5.93)
Low exposure	4	0.46 (0.00)	1.08 (0.82-1.40)	1.08 (0.82-1.40)
High-exposure studies				
Controlled* for HIV status	7	0.03 (0.57)	2.93 (2.37-3.61)	3.26 (2.26-4.70)
Controlled* age, sex, SES, smoking	5	0.04 (0.61)	3.27 (2.38-4.50)	3.49 (2.06-5.90)
Controlled* HIV, age, sex, SES, smoking	4	0.07 (0.42)	3.92 (2.70-5.71)	4.08 (2.49-6.68)
Controlled* infection, age, sex, SES	4	0.23 (0.30)	4.11 (2.84-5.94)	4.21 (2.73-6.48)
Excluding three smallest studies	8	0.03 (0.59)	2.75 (2.19-3.46)	2.94 (1.89-4.59)
Excluding three smallest and Brown I and Kim	6	0.32 (0.15)	2.76 (2.34-3.81)	2.96 (2.28-3.85)
Pulmonary TB cases only**	2	0.49 (0.00)	3.67 (2.58-5.22)	3.67 (2.58-5.22)
All types of $\mathrm{TB}^{1 *}$	6	<0.01 (0.83)	2.52 (1.98-3.19)	2.87 (1.47-5.58)

*Controlled for respective covariates, either by design (e.g. through inclusion/exclusion criteria) or in the analysis (stratification or multivariate analysis)
**Excluding three smallest studies

Research article
Alcohol use as a risk factor for tuberculosis - a systematic review Knut Lönnroth*, Brian G Williams, Stephanie Stadlin, Ernesto Jaramillo and Christopher Dye

Host Factors:

Global distribution of alcohol use in men

Host Factors: BMI

Dose-response relationship in the reviewed cohort studies on the association between BMI and TB incidence.

Lönnroth K, Williams BG, Cegielski P, Dye C. A consistent log-linear relationship between tuberculosis incidence and body mass index. Int J Epidemiol. 2009 Oct 9. Ahead of print.

Undernutrition

Global Distribution Male Smoking

Male Smoking

Smoking prevalence for men
Smoking among males aged 15 and over latest owioble dato

OPEN \odot ACCESS Freely available online

PLOS medicine

Tobacco Smoke, Indoor Air Pollution and Tuberculosis: A Systematic Review and Meta-Analysis
 Hsien-Ho Lin ${ }^{1}$, Majid Ezzati ${ }^{2}$, Megan Murray ${ }^{\text {1,3,4* }}$

1 Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, United States of America, 2 Department of Population and International Health and Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, United States of America, 3 Division of Social Medicine and Health Inequalities, Brigham and Women's Hospital, Boston, Massachusetts, United States of America, 4 Infectious Disease Unit, Massachusetts General Hospital, Boston, Massachusetts, United States of America

Study

Effect Size

Cohort study

Leung (2004)

Case-control studies

Jick (2006)
Shetty (2006)
Lienhardt (2005)
Wang (2005)
Crampin (2004)
Ariyothai (2004)
Tekkel (2002)
Kolappan (2002)
Tocque (2001)
Dong (2001)
Alcaide (1996)
Buskin (1994)
Lewis (1963)
Brown (1961)
Lowe (1956)

Heterogeneity: $I^{2}=54.4 \%$

Cross-sectional studies

Gupta BN (1997)
Yu (1988)
Adelstein (1967)
Shah (1959)
Heterogeneity: $\boldsymbol{I}^{\mathbf{2}=50.2 \%}$
\qquad 2
4
10

Leading causes of death in China - 2002

Attributable and avoidable disease burden

Estimate and model smoking trends in China

Indoor air pollution from solid fuel and tuberculosis: a systematic review and meta-analysis

H-H. Lin,* C-W. Suk, ${ }^{+}$H-L. Lo, ${ }^{\ddagger}$ R-Y. Huang, ${ }^{\ddagger}$ D. A. Enarson, ${ }^{\boxed{5}}$ C-Y. Chiang ${ }^{\dagger § \uparrow}$

*Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, ${ }^{\dagger}$ Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, ${ }^{\ddagger}$ Department of Community Health, Mennonite Christian Hospital, Hualien, Taiwan; International Union Against Tuberculosis and Lung Disease, Paris, France; ${ }^{\dagger}$ Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan

Population using solid fuels (\%), 2010

 Total

Diabetes and TB risk

Severity of diabetes and risk of TB

Study	Diabetes strata	Relative Risks	95\% CI
PabloMendez et al., 1997	No DM	1	--
	Type II DM, uncomplicated	1.08	(0.98-1.20)
	Type I DM, uncomplicated	1.47	(1.25, 1.73)
	Poorly controlled	2.75	(2.46, 3.06)
Leung et al., 2008		1	--
	DM, HbA1c<7\%	0.81	(0.44, 1.48)
	DM, $\mathrm{HbA} 1 \mathrm{c}>=7 \%$	2.56	$(1.95,3.35)$

Differential yield by severity of DM

Relative detection of TB by severity of diabetes in studies that stratified by insulin dependence

| Study | Diabetes Severity (Quantity of Insulin Required) | Prevalence or
 Incidence Ratio
 (compared to |
| :--- | :---: | :---: | :---: | :---: | :---: |
| mild diabetes) | | |$|$

Number of people with DM to screen to detect 1 additional TB case

Number of people with TB to screen to detect 1
additional case of DM

Number of people with diabetes worldwide in 2017 and 2045 (20-79 years)

Others

- Malignancies
- Renal failure
- Gastrectomy and jejunoileal bypass
- Steroid use
- Infliximab
- RA?

Others

The global distribution of risk factors by poverty level

Tony Blakely, ${ }^{1}$ Simon Hales, ${ }^{2}$ Charlotte Kieft, ${ }^{3}$ Nick Wilson, ${ }^{4}$ \& Alistair Woodward ${ }^{5}$

Bulletin of the World Health Organization | February 2005, 83 (2)

Fig. 3. Prevalence of risk factors by level of absolute poverty
Child malnutrition

Indoor air pollution

AFRD $=$ Africa, stratum D
AFRE $=$ Africa, stratum E
AMRB $=$ Americas, stratum B

AMRD $=$ Americas, stratum D
EMRB $=$ Eastern Mediterranean, stratum B EMRD $=$ Eastern Mediterranean, stratum D

EURB $=$ Europe, stratum B
EURC = Europe, stratum C
SEARB $=$ South-East Asia, stratum B

SEARD $=$ South-East Asia, stratum D
WPRB $=$ Western Pacific, stratum B

Absent regional labels indicates no available data for risk factor.

Tobacco use

Overweight and obese (15 to 44 years old females only)

Alcohol use

