Anatomy of an Epidemic

Model of a simple epidemic

- Definitions
 - time periods
 - contact rate
 - transmission parameter
 - susceptibility
 - immunity

Definitions

- Incubation period
 - Time before symptoms develop
- Latent period
 - Time from infection until infected person becomes infectious
- Infectious period
 - Time during which infected person is infectious to others
- Symptomatic period
 - Time during which symptoms are present

Time Lines for chickenpox

Most transmission occurs prior to symptoms

Time Lines for Pertussis

Time of infection

Compartmental model of a simple epidemic

Definitions

- time periods
- contact rate
- transmission parameter
- susceptibility
- immunity

Contacts

- Respiratory
 - Cough
 - Sneeze
 - Droplets
 - Talking/singing

Contact rate

k = the average number of relevant contacts made by an infective person per unit time.

Varies by

- age
- sociodemographics
- kind of contact
- employment

Definitions

- time periods
- contact rate
- transmission parameter
- susceptibility
- immunity

Transmission probability

Probability of successful transmission of an infectious disease from an infective to a susceptible person, given contact between that infective and the susceptible person

Transmission parameter

- Term combines
 - Transmission probability
 - Contact rate
 - Units are sometime nebulous!

Definitions

- time periods
- contact rate
- transmission probability
- susceptibility
- immunity

Acquired immunity

abundance

Incidence

- The incidence of an infectious disease is a function of
 - contact rate, k
 - transmission probability, b
 - prevalence of infectious people
- Theory of dependent happenings

 number of people affected is dependent on number of people already infected

Incidence rate as a function of prevalence

 $\lambda(t) = k^*b^*Prevalence(t)$

Where

 $\lambda(t)$ = incidence rate at time t

k=number of people contacted per time unit

b=transmission probability

Consequence

Can use this to estimate b^*k (β), which is the transmission parameter.

Since $\lambda(t) = b^* k^* Pr(t) = \beta^* Pr(t)$

then

 $\beta = \lambda(t)/Pr(t)$

Simple SIR model

Parameters

 λ = incidence

D=duration of infectiousness

d=recovery rate

d=1/D

Influenza outbreak in boys' boarding school

- January 1978
- 763 boys returned from winter vacation
- Within 1 week, 1 case of flu
- 2 cases followed within 4-5 days
- By end of month, 50% boys sick
- Most of school affected by mid-Feb
- No further cases after mid-Feb

Model

- Initial State Variables
 - S=762
 - I=1
 - R=0
- Parameters

$$-D=2 \text{ days} \implies d=.5$$

 $-\beta = 2$

Model of influenza outbreak in boys' boarding school

Infectious boys in an influenza outbreak in boys' boarding school

The basic reproductive number

The number of people who develop an infectious disease as the result of infection by a single infectious case introduced into an entirely susceptible population.

Basic reproductive number

R₀ is a composite function of

- transmission probability
- average number of contacts
- duration of infectiousness

$$\mathsf{R}_0 = \mathsf{R}_0 = b^* k / d = \beta^* D$$

R_0

• If $R_0 > 1$, disease is epidemic

• If $R_0 = 1$, disease is endemic

• If $R_0 < 1$, disease will die out

Some R₀s

Measles	England	1947	13-14
	Nigeria	1968	16-17
	Kansas	1920	5-6
Pertussis	England	1944-78	16-18
	Canada	1912	7-8
Chickenpox	USA	1912	7-8
	USA	1944	10-11

The effective reproductive number R_E

- Population not entirely susceptible
- Fewer people infected by a single case

•
$$R_{E} = R_{0}^{*}x$$

Where x = proportion of contacts that are with susceptibles

Effective reproductive number

- Not a stable attribute of an infectious disease
- Useful if disease is endemic (or at equilibrium) since R_e=1
- If chickenpox is "endemic" and 20% of the population is susceptible
 - $R_e = R_0 x$ and $R_e = 1$
 - R0 = 1/.2 = 5
- Can use serological data to estimate R₀

Thresholds

• If initial S > 191, epidemic occurs

If initial S = 191, endemic disease occurs

• If initial S < 191, no epidemic

Adding births and deaths

Parameters for measles

- b=.75
- D= 12 days so d = 1/(12/365) = 30
- k= 12 week = 600 year
- For N= 1000000
- For m = 1/72

Inferences

- In the absence of other perturbations, the system of differential equations describing the SIR transmission process in an "open" community comes to a stable equilibrium
- The equilibrium value of I varies with R₀
- The equilibrium values of I also depend on the rate of births and deaths in the population.

TB considerations

- Latency
- Reactivation
- Immunity?
 - After infection?
 - After disease?
- Non-infectious disease cases
- Specific interventions

Parameters

Proportion who are fast progressors	р	.05 (03)
Proportion of cases that are infectious	f	.7 (.585)
Reactivation rate	V	.0025600527
Transmission parameter	bk	
Recovery rate	d	.058 (.021086)
Mortality	m	
TB specific mortality	TBm	.139

Other issues

- Relapse
- Chemoprophylaxis
- Treatment

New parameters

- r = relapse rate = .01-.04
- σ = chemoprophylaxis
- ϕ = effective treatment

These are variables that depend on treatment programs and goals

R_0

R_0 for TB = sum of R_0 for slow and fast TB

Parameter values very imprecise

R₀ ranges from .74 - 18.48 with mean of 4.47

Contribution of fast, slow and relapse

How much do you need to do to eradicate disease?

- How much chemoprevention?
- How much case finding and treatment?
- How much of both together?

Levels of treatment required to eradicate TB: combined approaches: Curves represent eradication thresholds

