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 bicycls[2.2.2] octane (DABCO)-glycerol and visualized
 on a Leica DMIRBE microscope equipped for epifluo-
 rescence. The DAPI banding was imaged with a cooled
 CCD camera (Photometrics, Tucson, AZ) or by spectral
 imaging through a DAPI-specific optical filter.

 5. Spectral images were acquired and analyzed with the
 SD200 spectral bio-imaging system (Applied Spectral
 Imaging, Ltd., Migdal Haemek, Israel). The optical ar-
 rangement is schematically presented in Fig. 1. The
 SD200 imaging system attached to an inverted micro-
 scope (Leica DMIRBE) by means of a C-mount consists
 of an optical head with a special Fourier transform spec-

 trometer (Sagnac commiinoIn path interferometer) to mea-
 sure the spectrLum, and a cooled CCD camera (Prince-
 ton Instruments, Trenton, NJ) for imaging. The samples
 were illuminated with a Xenon lamp (OptiQuip
 770/1600) and imaged with a 63x oil immersion objec-
 tive through a custom-designed filter set (Chroma Tech-
 nology, Braftleboro, VT) with broad emission bands (ex-
 citation filter: 486/28 nm, 565/16 nm, 642/22 nm; emis-
 sion filter: 524/44 nm, 600/38 nm, 720/113 nm; beam-
 splitter: reflection 421 to 480 nm, 561 to 572 nm, 631 to
 651 nm; transmission 495 to 564 nm, 580 to 620 nm,
 660 to 740 nm). Excitation through this filter set allows all
 dyes to be excited and measured simultaneously with-
 out an image shift. The generation of a spectral image is
 achieved by acquiring - 100 frames of the same image.
 Each two frames differ only in the optical path differenc-
 es (OPDs) created by a scanner controller in the inter-
 ferometer. In this way the interferogram as the modulat-
 ed function of intensity (that is, the intensity as a function
 of OPD) is measured simultaneously for each pixel in the
 image. However, each pixel functions like a stand-alone
 Fourier transform spectrometer. Measurement times
 vary depending on the brightness and the size of the
 image, the desired spectral resolution, and the signal-
 to-noise ratio. A typical measurement for chromosome
 painting probes takes about 50 s with a 15-nm (at 600
 nm) spectral resolution. The spatial resolution of the
 measurement is -0.24 Im and is limited by the CCD
 pixel size (15 ?m) and the objective magnification (63x).
 Afterthe measurement, -2 min are required to build the
 spectral image with a software-based fast Fourier trans-
 form (FFT) algorithm [E. 0. Brigham, The Fast Fourier
 Transform and its Application (Prentice-Hall, E ngIewood
 Cliffs, NJ, 1988)]. The conversion of emission spectra to
 visualize the spectral image in display colors is achieved
 as follows: The measured spectrum at each pixel is
 divided into three spectral ranges (475 to 550 nm, 550
 to 650 nm, and 650 to 750 nm). Each of the spectral
 ranges is visualized in a different color (blue, green, and
 red, respectively). The intensity for each color is propor-
 tional to the integrated intensity in the corresponding
 spectral range (Figs. 1 and 2).

 6. One of the most important analysis algorithms is
 the spectral-based classification algorithm that en-
 ables multiple different spectra in the image to be
 identified and highlighted in classification colors.
 This allows assignment of a specific classification
 color to all human chromosomes on the basis of their
 spectra. This algorithm assumes that the (reference)
 spectrum of each chromosome has been measured
 and stored in a reference library in the computer. A
 classification color is assigned to each pixel in the
 image according to the classification color assigned to
 the reference spectrum that is most similar to the
 spectrum at the given pixel. A minimal square error

 algorithm SXYn = E [/x (A) - In(X)]2 is computed for
 every pixel, in which /X,Y() is the normalized spectrum
 at pixel coordinates x,y, and In(,) represents the nor-
 malized reference spectrum for each of the chromo-
 some n = 1, 2, ... 23 (X), 24 (Y). After calculating the
 value of S n for all reference spectra, the smallest
 value is chosen and a classification color is assigned
 to that pixel in accordance with the classification color
 assigned to the most similar reference spectrum.
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 Control Strategies for Tuberculosis Epidemics:
 New Models for Old Problems

 S. M. Blower,* P. M. Small, P. C. Hopewell

 Tuberculosis, although preventable and curable, causes more adult deaths than any
 other infectious disease. A theoretical framework for designing effective control strat-
 egies is developed and used to determine treatment levels for eradication, to assess the
 effects of noneradicating control, and to examine the global goals of the World Health
 Organization. The theory is extended to assess how suboptimal control programs con-
 tribute to the evolution of drug resistance. A new evaluation criterion is defined and used
 to suggest how control strategies can be improved. In order to control tuberculosis,
 treatment failure rates must be lower in developing countries than in developed countries.

 For many years tuberculosis has been both a
 preventable and a curable disease. Isoniazid
 is used to prevent individuals latently infect-
 ed with Mycobacterium tuberculosis from de-
 veloping disease, and regimens consisting of
 multiple drugs are highly successful in curing
 active cases (1). However, tuberculosis still
 causes more adult deaths worldwide than any
 other infectious disease (2). This finding sug-
 gests that many of the current control strat-
 egies that have been empirically designed are
 in need of improvement; recent increases in
 cases caused by drug-resistant organisms,
 many of which have arisen as a result of
 treatment failure, have exacerbated the con-
 trol problems (3). We suggest that new con-
 trol strategies can be designed based on a
 quantitative understanding of the transmis-
 sion dynamics of tuberculosis.

 In previous studies, we formulated and
 analyzed mathematical models that enable
 understanding of the intrinsic transmission
 dynamics of untreated tuberculosis epidem-
 ics and interpretation of the historical epi-
 demiology of this disease (4-6). These
 transmission models reflect current biomed-
 ical understanding of the pathogenesis of
 tuberculosis. We have extended these mod-
 els to include the population level effects of
 chemoprophylaxis and treatment (7); using
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 this chemoprophylaxis and treatment mod-
 el (Fig. 1), we have developed a theoretical
 framework for designing effective tubercu-
 losis control strategies (8).

 We assessed the epidemic control effects
 of treatment and chemoprophylaxis by de-
 riving the effective reproductive rate (R) of
 tuberculosis from our model

 (1- p)v

 ( C + V(1 )

 where 3 is the transmission coefficient for
 tuberculosis; the other parameters are de-
 fined in (7).

 R is the average number of secondary
 infectious cases that are produced when one
 infectious case is introduced into a disease-
 free population in which a program of che-
 moprophylaxis or treatment (or both) is in
 place (9). Consequently, R is an epidemio-
 logical measure of the severity of an epidem-
 ic; if R > 1, an epidemic may occur, but if
 R < 1, an epidemic will die out.

 The value of R is determined by the prod-
 uct of three components (Eq. 1): the effective
 contact rate {defined as the average number of
 susceptibles that one infectious case infects
 per unit time [(fI)/pil, the average duration
 of infectiousness of a case [1/(() + p. + A'
 and the probability that an infected individual
 will become an infectious case {defined as p
 for primary progressive and [(1 - p)v]/(o +
 v + p) for reactivation tuberculosis}. Equa-
 tion 1 can be used to qualitatively and quan-
 titatively assess the effects of chemoprophy-
 laxis and treatment for epidemic control.
 Qualitatively, an increase in the chemopro-
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 phylaxis rate (u) will reduce the severity of an
 epidemic (that is, R) by decreasing the prob-
 ability that a latently infected individual will
 progress to disease, and an increase in the
 treatment rate (+) will reduce the severity of
 an epidemic by decreasing the average dura-
 tion of infectiousness of a case. Quantitative-
 ly, we can use Eq. 1 to calculate the effect of
 treatment on decreasing the average duration
 of infectiousness. For example, if treatment
 rates are 95%, as in San Francisco (10), a case
 will remain infectious (on average) for -4
 months. In contrast, if treatment rates are
 only 50%, as in many developing countries
 (11), then a case will remain infectious (on
 average) for over 3 years (12).

 Wade Hampton Frost noted in 1937 that
 there must exist a transmission threshold that
 would ensure the eradication of tuberculosis
 (13). We have quantified Frost's criterion by
 using the derived analytical expression for R
 to calculate the critical chemoprophylaxis and
 treatment rates that would reduce transmis-
 sion to the level such that eradication (sensu
 Frost) will occur (14). If both treatment and
 chemoprophylaxis are used for epidemic con-
 trol, the critical rates of chemoprophylaxis
 and treatment that are necessary for eradica-
 tion can be calculated by setting the value of
 R to unity and then solving for all possible
 combinations of ( and + (Fig. 2A). For any
 specific epidemic there are many different

 Iri

 ~~tx x g1X + Susceptible

 (1 - p)XX

 L
 [tL Latently _ pkX

 infected

 vL

 gT -- T
 Tuberculosis

 Fig. 1. The model consists of five ordinary differen-
 tial equations: dX/dt = l - XX - pX, dL/dt = (1 -
 p)XX- (v+ p + u)L,dC/dt= uL - RC,dT/dt= vL
 + pXX - (p + AT + O)T, and dE/dt = ( T - RE.
 The model captures the temporal dynamics of five
 groups of individuals: susceptible individuals (X),
 noninfectious, nondiseased latently infected indi-
 viduals (L), effectively chemoprophylaxed individu-
 als (C), active infectious cases of disease (T), and
 effectively treated cases (F). For a description of the
 model and definition of parameters, see (4, 7).

 control strategies that would be effective in
 eradicating tuberculosis; any control strategy
 (that is, by treatment alone or by a combina-
 tion of chemoprophylaxis and treatment) that
 occurs in the subset of control strategies that
 lie along or above the plotted functions would
 be effective. For each epidemic, any of the
 minimum control strategies that lie along the
 plotted solution to R = 1 are functionally
 equivalent. Higher than the minimum lev-
 els of control will decrease R < 1. Figure
 2A indicates that it is possible to eradicate
 tuberculosis either by treatment alone or by
 a combination of treatment and chemopro-
 phylaxis, but that eradication will not be
 possible by chemoprophylaxis alone. If only
 treatment of cases is used, then high levels
 of treatment are necessary to achieve erad-
 ication. In operational terms, this analysis
 assists in allocating resources to increased
 treatment through directly observed thera-
 py versus chemoprophylaxis.

 In developed countries, treatment rates
 presently range from 70 to 95% (15), close to
 the critical eradication rates. However, in
 most developing countries, treatment rates
 range from 50 to 75% (11); these treatment

 rates may be far below the critical eradication
 rates. The target for the World Health Orga-
 nization's (WHO) Tuberculosis Control
 Strategy by the year 2000 is to detect 70% of
 all sputum-positive cases worldwide (with tar-
 gets of 60 and 85% for low- and middle-
 income developing countries, respectively)
 and to cure 85% of all sputum smear-positive
 cases detected worldwide (with a target of

 95% for developed countries) (16). By com-
 bining these two objectives, we can estimate
 that the WHO's target is to effectively treat
 a cumulative fraction of 60% of all sputum-
 positive cases worldwide, with targets of 51%
 in low-income developing countries, 72% in
 middle-income developing countries, and
 67% in developed countries. It is evident
 from Fig. 2A that it is unlikely that the
 WHO's target figures would lead to the glob-
 al eradication of tuberculosis (17).

 It is essential to specify control strategies
 in terms of clearly defined treatment vari-
 ables. Although the WHO's target figures are
 presented in terms of the cumulative fraction
 of cases treated (FT), these target figures
 should also be considered in terms of the
 proportion of cases that require treatment per
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 Fig. 2. (A) The minimum cumulative fraction of latent infections that require chemoprophylaxis [u0/(U0 +

 v + ji)] and the minimum cumulative fraction of tuberculosis cases thlat require treatment + p~+
 PRT)] in order to eradicate a mild, moderate, or severe tuberculosis epidemic. The severity of the epidemic
 is specified by the value of the basic reproductive number, Ro [Ro is the average number of secondary
 infectious cases of tuberculosis that are produced when one infectious individual is introduced into a

 disease-free population (4)]. Mild, moderate, and severe epidemics correspond to Ro values of 4, 9, and
 17, respectively (4). (B) The relation between the cumulative fraction of cases treated and the proportion of
 cases treated per year (14). (C) The effects of chemoprophylaxis or treatment on the relative tuberculosis
 problem (defined as the number of cases that would occur with the control program in place divided by the

 number of cases that would occur in the absence of any control program). Results for a mild epidemic (Ro
 = 4) are shown. (D) Results for a moderately severe epidemic (Ro = 9).
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 year (PC). The relation, derived from our
 model, between these two treatment variables
 (14) is shown in Fig. 2B. At high levels of
 treatment, the cumulative fraction of cases
 treated and the proportion of cases treated per
 year are the same, but at low or moderate
 levels they are significantly different. The cu-
 mulative fraction of cases treated can be fairly
 high even with a low proportion of cases
 treated per year, because tuberculosis cases
 can sulvive for several years without treat-
 ment (18, 19). Figure 2B suggests that the
 WHO's target treatment levels are attainable
 even if only a small proportion (- 15 to 30%)
 of cases are treated per year.

 Although the WHO's target treatment
 levels may not lead to eradication, these non-
 eradicating treatment levels could significant-
 ly reduce morbidity and mortality (17). How
 many cases of tuberculosis could be prevented
 if chemoprophylaxis or treatment were ap-
 plied at noneradicating levels? Figure 2, C and
 D, presents results for mild and moderately
 severe epidemics. The epidemiological effect
 is specified in terms of the relative tuberculo-
 sis problem, which is defined in terms of the
 number of cases that would occur with the
 control program in place divided by the num-
 ber of cases that would occur in the absence of
 any control program. Relative tuberculosis
 problem results are plotted for two cases: treat-
 ment alone and chemoprophylaxis alone. If
 the WHO's maximum treatment levels are
 achieved (that is, -30% of cases are treated
 per year), then the number of cases could be
 reduced by as much as 80 to 90%.

 Control strategies cannot simply be spec-
 ified in terms of treatment and chemopro-
 phylaxis rates because treatment failure often
 occurs and often leads to the evolution of
 acquired drug resistance (20). Cases of ac-
 quired drug resistance can then produce cas-
 es of primary drug resistance by transmitting

 their infection to susceptible individuals.
 Drug-resistant cases present a significant
 challenge to control programs, because they
 are more difficult and more expensive to
 treat (21). To evaluate the problem of drug
 resistance in the design and the evaluation of
 control strategies, we used our theoretical
 framework to define a new evaluation crite-
 rion, the maximum acceptable probability of

 treatment failure (rMAX); we defined rMAX as
 the probability of treatment failure at which
 X cases of drug resistance are generated for
 each treated drug-sensitive case (22).

 We derived the evaluation criterion rMAX
 by extending our chemoprophylaxis and treat-
 ment model to inctude two strains of tubercu-
 losis, one drug-sensitive and the other drug-
 resistant (Fig. 3). Both the drug-sensitive and
 the drug-resistant epidemics are driven by
 their own intrinsic dynamics, but the two
 epidemics are also linked because a drug-sen-
 sitive case can acquire drug resistance through
 treatment failure. Failure occurs (with proba-
 bility r) either because of patient noncompli-
 ance or inappropriate and ineffective treat-
 ment regimens (or both). In our linked model
 (as in the real world), treatment failure causes
 acquired resistance to arise directly and pri-
 mary resistance to arise indirectly; each treat-
 ed drug-sensitive case produces (on average) r
 cases of acquired drug resistance and r*RDR
 cases of primary drug resistance (23). We
 specified the effectiveness of treatment of a
 drug-resistant case relative to the treatment of
 a druLg-sensitive case by 8; consequently, drug-
 resistant cases are untreatable or untreated (or
 both) when 8 = 0, drug-resistant and drug-
 susceptible cases are treated with equal effec-
 tiveness when 8 = 1, and drug-resistant cases
 are partially effectively treated when 1 > 8 >
 0 (24). Our theoretical framework can be used
 to evaluate the average duration of infectious-
 ness of a drug-resistant case; at tow retative

 treatment efficacy levels, drug-resistant cases
 can remain infectious for long periods of time,
 even if treatment rates are high (Fig. 4A).
 Consequently, low relative treatment efficacy
 of drug-resistant cases contributes indirectly
 to generation of primary duLg resistance.

 Our evaluation criterion, rMAX, can be
 used to identify counterproductive control
 programs (defined as having a probability of
 treatment failure > rMAX, hence the number
 of drug-resistant cases produced per treated
 drug-sensitive case is greater than the specified
 value of X). If X = 1, then a counterproduc-
 tive control program causes a perverse out-
 come by producing more than one drug-resis-
 tant case for each drug-sensitive case treated.
 In Fig. 4B, rMAX is plotted for three levels of
 relative treatment efficacy (8 = 0.7, 0.5, and
 0.0) and with X = 1 (so that one drug-resis-
 tant case is generated for each treated drug-
 sensitive case); hence, each plotted curve
 [which is a solution to the analytical expres-
 sion for rMAX (22)] illustrates the dependence
 of rMAX on the treatment rate. Figure 4B can
 be used to identify which control programs are

 Fig. 3. Drug-sensitive and drug-re-

 sistant two-strain model. The mod- PXR
 el shows the transmission dynam-

 ics of the drug-sensitive strain (thin TR , L T
 lines) and the drug-resistant strain L (1 - P)XR
 (bold lines indicate development of
 primary resistance; dotted line indi- * x
 cates the development of acquired
 resistance). The model is specified i

 by the following eight equations: (i) (1- s-o Ls v L TS - T
 dX/dt = H' - X(rSTS + PRTR) -
 pX, (ii) dLs/dt = (1 - p)PsTsX - (v \
 + [i + U)Ls, (iii) dCs/dt = oLs - sPX (1 -
 pCs, (iv) dLR/dt = (1 - P)PRTRX -
 (v + p)LR, (v) dTs/dt = ppsTsX + vLs - (p + ?T + )TS, (vi) dEs/dt = ?(1 - r)TS - RES, (vii) dTR/dt =
 P RTRX + vLR + XrTs - (p + AT + 8OTR, and (viii) dER/dt = 8XTR - RER. Parameters: Ls, the number
 of individuals latently infected with drug-susceptible tuberculosis; LR' the number of individuals latently
 infected with drug-resistant tuberculosis; Cs, the number of individuals (with drug-sensitive organisms)
 effectively chemoprophylaxed; Ts, the number of cases of drug-sensitive tuberculosis; TR, the number
 of cases of drug-resistant tuberculosis; Es, the number of cases of effectively treated drug-sensitive
 cases; and ER, the number of cases of effectively treated drug-resistant cases; the remaining parame-
 ters are defined in (7).
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 Fig. 4. (A) The effect of treatment rate (as defined by
 the proportion of drug-sensitive cases treated per
 year) on the average duration of infectiousness of a

 drug-resistant case. Three levels of relative efficacy (b
 = 0.70, 0.50, and 0.10) of treatment of drug-resis-
 tant cases are shown. (B) The maximum acceptable
 probability of treatment failure (rMAx) is calculated (22)
 and plotted as a function of the treatment rate (as
 defined by the proportion of drug-sensitive cases
 treated per year) assuming that the relative efficacy of
 treatment (8) of a drug-resistant case is 0.7, 0.5,
 untreatable, or untreated (b = 0.0).
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 perverse; any control program with a probabil-
 ity of treatment failure that lies in the region
 above the curve is perverse. This figure dem-
 onstrates that any program with a treatment
 failure rate ?50% should not be operating
 because it will result in a perverse outcome.

 The maximum acceptable level of treat-
 ment failure increases as treatment rates de-
 crease or the relative efficacy of treatment of
 drug-resistant cases increases (or both). In de-
 veloped countries, treatment rates are high (70
 to 95%) (15), as is the relative efficacy of
 treatment of drug resistance (50 to 70%) (25,
 26). In developing countries, treatment rates
 are low (50 to 75%) (11), as presumably is the
 relative efficacy of treatment of drug resistance
 (27). At present, treatment failure rates in
 developing countries are probably much high-
 er than those in areas with good control pro-
 grams in developed countries (-5%) (27),
 although even in inner city populations of
 developed countries, treatment failure rates
 can be nearly 90% (3). To prevent perverse
 outcomes, the treatment failure rate should
 be <35 to 40% in developed countries (Fig.
 4B) and <10% in developing countries (Fig.
 4B) (28). Thus, higher standards (lower treat-
 ment failure rates) should be required of con-
 trol programs in developing countries than of
 control programs in developed countries.
 However, if the relative efficacy of treatment
 of drug-resistant tuberculosis could be in-
 creased in developing countries, then higher
 treatment failure rates could be tolerated.

 Our evaluation criterion, rMAX, can be
 used to decide how to improve a control
 program- either by increasing case-finding
 rates (which increases the proportion of cases
 treated per year) or by increasing case-holding
 rates (which increases compliance rates and
 hence decreases the probability of treatment
 failure). If the program change results in the
 probability of treatment failure becoming
 >rMAX, then the change is detrimental; if the
 probability of treatment failure becomes
 <rMAX, then the change is beneficial. In-
 creasing case-holding rates will always be ben-
 eficial (Fig. 4B); however, if the probability of
 treatment failure is high, then increasing case-
 finding rates without simultaneously increas-
 ing case-holding could be detrimental.

 It may be more efficient to adopt a hierar-
 chial two-stage approach when assessing the
 economics of tuberculosis control. The first
 stage would consist of the methodology that
 we propose to identify the subset of effective
 control strategies (29). In the second stage, an
 economic analysis would be applied to this
 subset of control strategies to assess the small-
 er subset of strategies that are cost-effective.
 Epidemics are nonlinear systems, and hence it
 is not always intuitive how to design and to
 improve control programs in order to mini-
 mize the evolution of drug resistance. We
 have derived an analytical expression for a

 new evaluation criterion-the maximum ac-
 ceptable probability of treatment failure-
 which we have used to identify and to suggest
 how to improve counterproductive control
 programs. The theoretical framework that we
 have developed can now be used for building
 more complex tuberculosis transmission mod-
 els that can be used for developing control
 strategies tailored to specific environments.
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